Sodium

ELECTROLYTES

The blood electrolytes include sodium, potassium, chloride, and the bicarbonate (HCO3) ion.
Sodium, potassium, and chloride enter the body via ingestion of food.
Carbon dioxide, on the other hand, originates within the body via the metabolic process of carbohydrates, fats, and proteins.
Normally the excretion of sodium, potassium, and water is equal to their intake. The kidneys secrete 80-90 percent of all electrolytes.
Excessive carbon dioxide stimulates the respiratory centers in the brainstem to increase respiration. Therefore, the kidneys and the lungs control sodium, chloride, potassium, water, and carbon dioxide thus exerting control over the acid/alkaline balance in the body.
There are also many other organs, and glands involved in this process, such as the posterior pituitary, adrenals, bowel, and uterus/prostate.
The purpose of electrolytes is to set up a shifting mechanism in the cell membrane via oxidation, allowing increased or decreased permeability to that membrane site.
Sodium, which is found in high concentration outside the cell, has the ability to gather up substances (foods) and bring them to active membrane sites.
Chloride is found in the cell membrane and acts as a “doorman” allowing or disallowing exchanges between the intracellular and extracellular fluids.
Potassium, which is found in high concentrations within cells, oxidizes chloride, and allows sodium, with the food to cross the cell membrane and enter the cell.
Sodium, potassium, chloride, calcium, and hydrogen are all transported via active transport.
SODIUM

Sodium is the most abundant cation (90%) and is the major base in the body. Sodium is either implanted into the food via saliva or is found in the food and has the following functions:

1. Sodium is an alkaline mineral that helps maintain alkaline activity.
Therefore, it helps in acid-alkaline balance, which affect intracellular/extracellular fluid exchange, osmotic pressure, via the sodium/potassium pump and does this in conjunction with antidiuretic hormone and aldosterone.

2. Sodium gathers, and aggregates (polarizes) all substances necessary to be exchanged by semi-permeable membranes. Sodium pumps proteins and sugars into the cell membranes.

3. Sodium also affects the renal tubules for the activity of discharging toxins. It literally aggregates toxins and holds them in suspension.

4. Sodium is controlled by the adrenal cortex and as mentioned above is extremely alkaline and therefore, can cause migration of substances towards its polarity, as well as causing these migrated substances to achieve permeability in an acid antioxidant type media known as a fatty membrane. Sodium is the substance necessary to polarize foods into storage according to that permeable membranes needs.

5. Sodium is also necessary for the transmission of neurological impulses by creating action potentials across neurological membranes.

6. Sodium concentration in and out of cells remains constant due to renal blood flow, carbonic anhydrase enzyme activity, aldosterone, and other steroids controlled by the anterior pituitary, rennin enzyme secretion, hypothalamus, and posterior pituitary control of ADH and vasopressin secretion

Chloride

ELECTROLYTES

The blood electrolytes include sodium, potassium, chloride, and the bicarbonate (HCO3) ion.
Sodium, potassium, and chloride enter the body via ingestion of food.
Carbon dioxide, on the other hand, originates within the body via the metabolic process of carbohydrates, fats, and proteins.
Normally the excretion of sodium, potassium, and water is equal to their intake. The kidneys secrete 80-90 percent of all electrolytes.
Excessive carbon dioxide stimulates the respiratory centers in the brainstem to increase respiration. Therefore, the kidneys and the lungs control sodium, chloride, potassium, water, and carbon dioxide thus exerting control over the acid/alkaline balance in the body.
There are also many other organs, and glands involved in this process, such as the posterior pituitary, adrenals, bowel, and uterus/prostate.
The purpose of electrolytes is to set up a shifting mechanism in the cell membrane via oxidation, allowing increased or decreased permeability to that membrane site.
Sodium, which is found in high concentration outside the cell, has the ability to gather up substances (foods) and bring them to active membrane sites.
Chloride is found in the cell membrane and acts as a “doorman” allowing or disallowing exchanges between the intracellular and extracellular fluids.
Potassium, which is found in high concentrations within cells, oxidizes chloride, and allows sodium, with the food to cross the cell membrane and enter the cell.
Sodium, potassium, chloride, calcium, and hydrogen are all transported via active transport.
CHLORIDE

Chloride a blood electrolyte, and is the major anion and exists in the extracellular spaces as part of the sodium chloride or HCl molecules.
Chloride is used for assessing pH, and electrolyte balance.
From a physiologic perspective, the primary purpose of chloride is to regulate the quantity of carbohydrates and proteins entering into the cells, by inhibiting the exchange of mineral controlled substances across the cell membrane and responds to the oxidative power of potassium.
Chloride the major anion is predominantly found in the extracellular spaces as part of sodium chloride or in the stomach as hydrochloric acid.
Chloride maintains cellular integrity by its influence on acid-base and water balance as well as osmotic pressure. Chloride has a reciprocal power with other anions by decreasing or increasing when there are too many or not enough anions. Aldosterone has a direct effect of reabsorption of sodium and an indirect effect on the increased absorption of chloride.
Chlorides are lost via the GI tract through vomiting or diarrhea and thru the kidneys during times of diuresis.

Chloride also responds to the antioxidant media (cell membrane) by mobilizing, and collecting sodium/food aggregates on a selectively permeable basis. This reaction is under the influence of the adrenal medulla/epinephrine/norepinephrine thereby maintaining energy stores.
Chloride also assists in the production of HCl via the chief cells in the stomach.
In the bowel, chloride is important in preventing the passage of water out of the body. Therefore, chloride literally blocks the flow of water/gas exchange across a cell membrane. This is extremely important in the intestines and bladder.

Chloride plays a vital role during the conduction of a neurological impulse where sodium lines up on the outside of a cell membrane, and potassium on the inside of the cell membrane, during the resting stage or polarized state. In a normal nerve fiber, the permeability of the membrane to potassium is about 100 times that of sodium. The sodium-potassium pump moves three sodium ions to the exterior of the cell, for every two potassium ions that are moved to the interior of the cell, creating a net positive charge to the outside of the cell membrane for each revolution of the sodium-potassium pump. This creates a positively charged external membrane and a negatively charged internal membrane, which sets up a membrane electrical potential. As a neurological impulse is transmitted down the nerve, (which is the excitation phase of an impulse), sodium crosses the cell membrane, and enters into the cell, while potassium moves to the external portion of the membrane.

This then creates the depolarization of the cell membrane, thereby creating a negative charge on the outside, and a positive charge on the inside. The transmission of each impulse along the nerve fiber reduces infinitesimally as the concentration differences of sodium and potassium between the inside and outside of the cell membrane change slightly. In so doing allows the nerve fiber to transmit between 100, 000 to 50, 000, 000 impulses before the concentration differences are rundown.

As the neurological impulse passes, the sodium-potassium ATPase pump re-establishes the sodium-potassium ratio back to normal (repolarization). The pumping activity is dramatically increased approximately eightfold to restore the membrane back to the polarized state.
The chloride shift to the inside of the cell membrane during the final stages makes the inside of the cell, even more, negative, which further helps repolarize the cell.
Chloride generally increases and decreases with plasma or serum sodium levels.

CHLORIDE IS HIGH WHEN

General considerations:

¬ Drink plenty of water
¬ Decrease sodium levels
¬ Increase fat-soluble vitamins D, E, K, and A