Calcium

CALCIUM
Calcium is the largest most nonpolar, alkaline and most abundant of all minerals with 99% of all calcium found in the bones and teeth.
Calcium exists in the ionized state 55 percent of the time and 45 percent of the time in the non-diffusible state, bound to either albumin, prealbumin or thyroglobulin. Therefore, if there is a decrease in serum albumin then there will be a decrease in serum calcium.
Calcium has many functions:
¬ Provides the mobilizing factor in trauma, infections and stress for tissue repair, along with vitamins A, C, manganese, phosphorus, and fatty acids.
¬ Causes vasoconstriction, while potassium, sodium, magnesium, hydrogen ions, and carbon dioxide cause vasodilatation.
¬ Is necessary for bone formation along with phosphorus, collagen, hydroxyapatite (gives bone its hardness) and bone salts of magnesium, sodium, potassium, carbonate, uranium, plutonium, and strontium.
¬ Calcium is used to create action potentials across smooth and striated muscles leading to contraction.
¬ Calcium is used as an intracellular communicator via calcium ion gated channels.
¬ Calcium collects and gather up lipoproteins, and move them across the intestinal membrane. Attaches to oils, fats, fatty acids and waxes. Calcium is absorbed in the upper portion of the small intestines (duodeneum), and the amount absorbed depends on the "acidity" of the intestinal content, via phosphorylation and protein content. When the ratio of calcium to magnesium (which is found in the intestinal membrane as well as cell membranes) is greater than 2-1, fat is drawn through the intestinal and cell membranes. Calcium also requires vitamin D. and HCl for optimal metabolism.

The glands involved with calcium are:
1. The stomach via the release of HCL, which affects the preparation and absorption of calcium.
2. The parathyroids- via parathormone control of calcium ion concentration by controlling intestinal absorption, excretion via the kidneys and the release of calcium from the bones.
3. The liver/gallbladder- via bile emulsification of lipoproteins, preparing them for intestinal absorption.
4. The spleen- which stores and ages fats or lipoproteins.
5. The parotids- due to their ability to program foodstuffs.
6. The thyroid glands-via "calcitonin", promoting deposition of calcium in the bones, while decreasing calcium concentration in the extra-cellular fluids and the blood.
7. The anterior pituitary via its control of magnesium regulating calcium uptake, which regulates protein transport thru the cell membranes.
8. The pancreas- via its ability to oxidize fatty acids
Therefore, any of the above glands or organs or combinations thereof has a great impact on calcium levels.
CALCIUM IS HIGH WHEN
General considerations
¬ Your patient should drink plenty of water
¬ Make sure they are not hypervitaminosis on Vitamins A or D
¬ Very high protein diets may increase calcium levels
¬ Magnesium and phosphates may also increase calcium levels
¬ Using sea salt can help to reduce calcium levels.
CALCIUM IS LOW WHEN
General considerations:
¬ Increase Vitamin A and D intake
¬ Increase albumin and protein intake
¬ Increase magnesium intake
¬ Increase phosphorus

Phosphorus

PHOSPHORUS
85% of the total phosphorus exists as phosphates or esters in the body and is found chiefly in the skeleton and is combined with calcium. 14% of the phosphorus is found in intracellular tissues and 1 % is found in the extracellular fluid. Therefore phosphorus levels are a poor indicator of levels of phosphates in the body.

Phosphorus runs inversely to calcium levels in the body at a calcium to phosphorus ratio of 10 to 4. Therefore, calcium can be a great indicator for phosphorus as well.
As calcium levels increase in the serum, phosphorus levels decrease, and when calcium levels decrease phosphorus levels increase. In fact, causes of high calcium also cause low phosphorus. The controlling factor of phosphorus is parathormone (PTH), which is also the calcium-controlling factor. Phosphorus helps calcium through the cell membrane by increasing the permeability of the cell membrane via oxygen displacement.

1. Phosphorus is responsible for growth and development by way of:
✓ bonding
✓ polymer function
✓ hydration
✓ chemical transport, and
✓ buffering

2. Phosphorus is also responsible for bone formation

3. Phosphorus and metabolism of glucose
Phosphorus is also required for the metabolism of glucose via phosphorylation. Phosphorylation is when a phosphate radical promoted by glucokinase in the liver, or hexokinase in other cells captures the glucose and once inside the cells keeps it there. The exception to this occurs in the liver, the kidneys, and the intestinal epithelial cells.
Ingestion of carbohydrates causes phosphorus to enter RBC’s with glucose causing a reduction of serum phosphorus levels and lipids.
Phosphorus also works in the stomach to stabilize sugars and activate starches by the twofold process of phosphorylation.
Phosphorylation and its counterpart, dephosphorylation, turn many protein enzymes on and off, thereby altering their function and activity.
By altering pepsin/HCL levels phosphorus can:

a. Stabilize simple sugars-simple sugars are easily oxidized (combusted) before they reach the liver, resulting in low sugar levels. Pepsin stabilizes these simple sugars, so they can be transferred to the liver for storage.

b. Activation of starches- HCl is necessary to breakdown oily carbohydrates (grains), which are difficult to oxidize (combust). Thus making them readily available for oxidation.

The above two mechanisms establish an HCl-pepsin balance in the stomach for proper pH digestion.
The presence of both HCl and pepsin in the stomach are critical for preparing carbohydrates, as well as proteins for further digestion in the small intestines.

4. The regulation and maintenance of the acid-base balance in the body by maintaining glandular acidity.

5. The storage and transfer of energy from one part of the body to the other.

6. Used in the Production of phospholipids (90 % produced by the liver): lecithin, A cephalin, and sphingomyelin
Phospholipids are necessary for:
Proper brain function (sphingomyelins)
Phospholipids are a major constituent of lipoproteins which can affect function, formation and transport of these lipoproteins causing serious cholesterol abnormalities
Production of cell membranes
Thromboplastin production produced from A cephalin

7. Intracellular phosphorus is used for:
Energy transport formation of ATP from ADP and creatine phosphate via oxidative phosphorylation.
Major constituent of plasma membranes (phospholipids)
Major constituent of DNA and RNA (nucleic acids)
Calcium transport and osmotic fluid pressure
General nutritional considerations when phosphorus is high:

1. Patient should increase water intake
2. Reduce fat intake
3. Reduce Vitamin D intake if overdosing
4. An isotonic saline solution (sea salt) will decrease phosphorus levels
5. Also, decrease phosphorus in the diet and add calcium carbonate to your diet

General considerations when phosphorous is low:

1. Vitamin D deficiency
2. Calcium deficiency
3. Magnesium deficiency
4. Patient needs a high protein diet