Sodium

ELECTROLYTES

The blood electrolytes include sodium, potassium, chloride, and the bicarbonate (HCO3) ion.
Sodium, potassium, and chloride enter the body via ingestion of food.
Carbon dioxide, on the other hand, originates within the body via the metabolic process of carbohydrates, fats, and proteins.
Normally the excretion of sodium, potassium, and water is equal to their intake. The kidneys secrete 80-90 percent of all electrolytes.
Excessive carbon dioxide stimulates the respiratory centers in the brainstem to increase respiration. Therefore, the kidneys and the lungs control sodium, chloride, potassium, water, and carbon dioxide thus exerting control over the acid/alkaline balance in the body.
There are also many other organs, and glands involved in this process, such as the posterior pituitary, adrenals, bowel, and uterus/prostate.
The purpose of electrolytes is to set up a shifting mechanism in the cell membrane via oxidation, allowing increased or decreased permeability to that membrane site.
Sodium, which is found in high concentration outside the cell, has the ability to gather up substances (foods) and bring them to active membrane sites.
Chloride is found in the cell membrane and acts as a “doorman” allowing or disallowing exchanges between the intracellular and extracellular fluids.
Potassium, which is found in high concentrations within cells, oxidizes chloride, and allows sodium, with the food to cross the cell membrane and enter the cell.
Sodium, potassium, chloride, calcium, and hydrogen are all transported via active transport.
SODIUM

Sodium is the most abundant cation (90%) and is the major base in the body. Sodium is either implanted into the food via saliva or is found in the food and has the following functions:

1. Sodium is an alkaline mineral that helps maintain alkaline activity.
Therefore, it helps in acid-alkaline balance, which affect intracellular/extracellular fluid exchange, osmotic pressure, via the sodium/potassium pump and does this in conjunction with antidiuretic hormone and aldosterone.

2. Sodium gathers, and aggregates (polarizes) all substances necessary to be exchanged by semi-permeable membranes. Sodium pumps proteins and sugars into the cell membranes.

3. Sodium also affects the renal tubules for the activity of discharging toxins. It literally aggregates toxins and holds them in suspension.

4. Sodium is controlled by the adrenal cortex and as mentioned above is extremely alkaline and therefore, can cause migration of substances towards its polarity, as well as causing these migrated substances to achieve permeability in an acid antioxidant type media known as a fatty membrane. Sodium is the substance necessary to polarize foods into storage according to that permeable membranes needs.

5. Sodium is also necessary for the transmission of neurological impulses by creating action potentials across neurological membranes.

6. Sodium concentration in and out of cells remains constant due to renal blood flow, carbonic anhydrase enzyme activity, aldosterone, and other steroids controlled by the anterior pituitary, rennin enzyme secretion, hypothalamus, and posterior pituitary control of ADH and vasopressin secretion

Carbon Dioxide

CARBON DIOXIDE

Carbon dioxide is created as a byproduct when potassium forces water into fat.
So carbon dioxide is the acid gas factor, which binds fats and selenium creating the intelligent metabolic activity between the water and fat.

80-90 percent of the carbon dioxide found in plasma is bound to protein and is represented as bicarbonate ions (HCO3-) which first exists in the extracellular spaces as CO2 then as H2CO3 and finally is buffered by the plasma and erythrocytes into sodium bicarbonate NaHCO3) and is regulated by the kidneys. The other 10 to 20 percent is dissolved CO2 gas (removed by the lungs), which is bound to protein as CO3 (2), and carbonic acid (H2CO3). The total CO2 comes from dissolved CO2, H2CO3, HCO3-
and carbaminohemoglobin (CO2HHb).

This occurs in the following way, carbon dioxide in the blood reacts with water in the red blood cells to form carbonic acid. In the blood cells, there is an enzyme called carbonic anhydrase that catalyzes the water and carbon dioxide 5,000 fold, creating a rapid exchange into carbonic acid. This allows tremendous amounts of carbon dioxide reacting with the water in the red blood cells, even before the blood leaves the tissue capillaries.

So a red blood cell creates carbonic acid from water and carbon dioxide. In another small fraction of a second, the carbonic acid formed in the red blood cell now disassociates into hydrogen and bicarbonate ions. The hydrogen ions combine with hemoglobin, as the bicarbonate ions diffuse out into the plasma while chloride ions diffuse into the red blood cells taking the place of the bicarbonate ions. This is made possible by the presence of a bicarbonate/chloride carrier protein in the red blood cell membrane, which acts as a shuttle for these two ions. Thus, the chloride content of venous red blood cells is greater than that of arterial cells. This is known as the chloride shift.
In addition, carbon dioxide can react directly with hemoglobin to form the compound carbaminohemoglobin. This carbaminohemoglobin creates the reversible reaction releasing carbon dioxide into the alveoli of the lungs.
Carbon dioxide then is the venous capillary exchange product after diffusion takes place. The active pressure intake of oxygen relies upon this diffusion. This active process realizes the ability of forced metabolism and is the ash byproduct.
Carbon dioxide is vital to pH balance and is controlled by the respiratory, renal, and posterior pituitary adrenal axis.
Therefore, any of these glands or organs or combinations thereof can affect carbon dioxide levels.
CARBON DIOXIDE IS HIGH WHEN
General considerations:
¬ Water loss- increase water intake
¬ Protein loss- increase protein intake
¬ Hypomagnesemia or hypokalemia causes increased CO2- increase potassium and magnesium

CARBON DIOXIDE IS LOW WHEN

¬ Water loss- increase water intake
¬ Hypermagnesemia or hyperkalemia causes decreased CO2- decrease potassium and magnesium support